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ABSTRACT

Experiments indicate that a multigrid-type cycle can be used as an efficient precon-
ditioner in the iterative solution of the discrete problem corresponding to a singularly
perturbed elliptic boundary value problem. Motivated by a report of Goldstein, we ex-
plore the theoretical basis for the efficiency of such a preconditioner when applied to a
model problem. The techniques developed are also used to analyze a multigrid V-cycle

when used alone as a fast iterative solver.
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1. Introduction

This work is motivated by a report of Charles Goldstein (7] in which the author

discusses the task of numerically solving the following elliptic boundary value problem:

-522 ey (a.(:r)

=1

) Z bi(z ) +ao(z:)u(:z:) = f(z) in Q C IR?
i=1 (1.1)

u(z) = g(z) on 99

where z = (z,2;) € 2, 0 < € << 1, the coefficients and data are sufficiently smooth,
and a;{z) > ¢ >0in 2, ¢=0,1,2.

The discrete problem arising from a typical discretization of (1.1) on a uniform grid of
mesh size h, h < ¢, is a large system of linear equations. For the solution of this system
to approximate the solution of the boundary value problem (1.1) with a fixed accuracy, we
must choose the mesh size small for small ¢, specifically, it is sufficient to keep the ratio
h/e fixed [1], [11]. In doing so, we not only get a much larger system, but the resulting
system is also more poorly conditioned.

With the goal of trying to solve this type of system, we use the conjugate gradient
algorithm as our iterative solver. It is known (e.g., [2],(9]) that if we apply the method
of conjugate gradients to the problem Bv = F where B is symmetric, positive definite,
then the number of iterations, Ng, required to solve the system to within a given relative

error, |lv — v'||/|lv - v°|| < 7, is given by

Ng(n) < Cin(2/n) VK(B) (1.2)

where K(B) = Amax(B)/Amin(B), v° is the initial guess and v* is the ¢ th approximant
to the solution, v. Our goal is to precondition the system so that the condition number,
K (B'), of the new system, B'v' = F', is much smaller than K (B) and behaves nicely
{bounded or slowly increasing) as ¢ and h decrease to zero.

It has been observed experimentally that a certain multigrid-type cycle is an inex-
pensive preconditioner for this system. The effectiveness of this preconditioner is quite

sensitive to the choice of the number of grids, k, used in the multigrid process. Fourier
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analysis was used in [7] in an attempt to prove that a careful choice of the number of
grids does guarantee a good preconditioner in the case where Q0 is a rectangle. Although
Fourier analysis is routinely used to study 2-grid multigrid cycles, the k-grid analysis, for
k > 2, is quite unwieldly and is not usually attempted. The difficulty arises from the
use of coarser grids on which certain modes “alias” (see [3]) or are “not visible” (see [12]).
Unfortunately, this “aliasing” was ignored in [7]. The experimental evidence is so striking,
however, that it seemed worth trying to complete the analysis.

We examine the effectiveness of the multigrid preconditioner by considering a special
case of the boundary value problem (1.1) with a;(z) =1, 1 =0,1,2, bi(z) =0, i = 1,2,
Q =(0,1)x(0,1) and ¢ real and small. It is for this model operator, A = ~e2A+1, that
we prove our basic results. More general singularly perturbed problems such as variable
coefficient and/or non-symmetric with positive definite symmetric part can be analyzed
using the properties of the multigrid preconditioner acting on Af together with such ideas
as spectral or norm equivalence, see 5] and [7].

Let h = 27" for a positive integer, n. Discretizing this mode! problem on a uniform
grid, Qu = {(lh,mh): I,m =1,2,...,2" — 1}, with mesh size, h, using a standard 5-point

discretization of the Laplacian (see Section 2.1), we obtain the linear system
€up := (=2 Ap +Dup = fa. (1.3)

In Section 3.1 we define a symmetric linear operator, My, based on multigrid ideas, using
k — 1 auxiliary grids of larger mesh sizes, 2Ph, for p = 1,2,...,k — 1. In fact, the vector

Miwy is essentially one “partial” multigrid V-cycle applied as if to solve the problem:
Apup = wy, (1.4)

starting with initial guess = 0, where A; is the matrix resulting from the corresponding
discretization of the Dirichlet boundary value problem for Poisson’s equation. In order to
obtain a symmetric operator, we take symmetric smooths. I.e., if r, smooths are done
on the pth grid in the fine to coarse part of the cycle, then r, smooths must be done on
the p th grid in the coarse to fine part. We take a fixed r, = r forall p=10,....&k - 1.
The adjective “partial” refers to the following property of this particular V—cycle: instead

of solving for the coarse grid correction exactly on the coarsest grid, 2r iterations of the

2
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smoother are applied. We choose the smoother to be a damped Jacobi iteration with
damping parameter, w, where 0 < w < 1. Taking w = 1 would correspond to an
undamped Jacobi iteration, but we exclude this choice. The choice w = .5 corresponds to

a Richardson iteration. Using M; as a preconditioner for (1.3), we claim:

If the mesh size on the coarsest grid is choosen to be approximately equal
to the singular perturbation parameter, ¢, then the condition number of

the preconditioned system is bounded independent of ¢ and hA.
Defining M§ = M}, where k is chosen so that h; = ¢, we justify this claim in 3 steps:

1. In Section 3.2 we reduce the problem to finding appropriate upper and lower
bounds for the eigenvalues of MfA;. Let ¢ : Q, — {1,2,...,(2" = 1)?} :
(i1h,i2h) — g¢i,i = (41,72), be a given ordering of the (2" — 1)? points of
Qn, and let {a;} be a (given) complete set of eigenvectors of A;. Define a
(2™ —1)2 x (2" — 1)® matrix, M, by

(M )q-' q; = Hij

where

i = (My Ajai, aj)

for each ¢ = (t1,122), 7 = (J1,J2) where 1 < 43,i2,71,j2 < 2" and (-,-) is the
discrete - L? inner product. Using this eigenfunction analysis (Fourier analysis),
the problem reduces to finding bounds on the eigenvalues of M. The off-diagonal
elements of M represent the “aliasing”.

2. In Section 3.3 we obtain a formula for a bound, C,",‘k‘r’u , such that, for every ¢,

Z i) < Ch ko rolbisl.
J#

Therefore we have diagonal dominance of the matrix, M, provided Ch i r. .
where

= 1
Ch,k,r.u i= sup Ch.k,r.w’
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“\ can be shown to be less than one. The constant C_';.,k,,.,w is calculated for

r=1234, w=.5.6.7.8.9, h=1/2,1/4,1/8,...,1/8192 and all possi-

ble corresponding values of k. All computed values of Ch k., are less than one

. with the exception of the case where only one smoothing is used and w < .7.

3. In Section 3.5 we restate the bounds given in (7] on the diagonal entries of the

matrix. These bounds are used, combined with the diagonal dominance, to show

that:

CIE2 < /\min(M)f z) < Ama.x(A/I)i 7.) < 0252,

for constants ¢;,c; > 0. The diagonal dominance of M is needed only to guar-

antee the positivity of the lower bound.

In Section 4 we describe some experiments which illustrate the efficiency of using the

optimal number of grids in the multigrid preconditioner. Experimental comparisons are

made between three different solvers for the model problem. In a preconditioned conjugate

gradient routine, two preconditioners are used, first the preconditioner analyzed in this

- paper, namely the preconditioner based on the Laplacian with smoothing on the coarsest

grid, and secondly a preconditioner which is based on the model operator itself, solving on

the coarse grid. The third solver used in the comparison is a symmetric multigrid V-cycle.

The techniques used in the analysis of “multigrid—as-a—preconditioner” can also be

used to analyse “multigrid~as-a—solver”. This analysis is simpler than the preconditioner

analysis since we don’t need diagonal dominance (and we don’t have it), see Section 5. In

Section 6 we show how the k-grid convergence bounds obtained in this way compare to the

experimentally observed convergence rates and to V-cycle convergence bounds obtained by

other methods.
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2.1 Notation

Consider the two-dimensional Dirichlet problem
~—Au=fin 2=(0,1)x(0,1)
{ (2.1)
u=0 on 9N
where A = Z§=1 9?/3z%. We discretize this problem on a family of grids. Let h = 27",
as in Section 1. Choose a positive integer k, £ < n. Define a coarse grid mesh size

hy = 25"'h . In Q we define k intermediate grids, Q7 , p = 1,2,...,k with mesh sizes
h, = 2'~Ph; . Clearly h = ki and

QP = {(.’L‘hym) = (lhp, mhp) :lim=1,2, ...,Np -1} (2.2)

where N, =1/h, and p=1,2,...,k.

We define the discrete operator, A,, which is the negative of the discrete five point
Laplacian, on the grid Q?, using the standard five-point discretization of the differential
operator, —A (see e.g., [6]). Each A, is a sparse (N, — 1)? x (N, — 1)? matrix with a
(p)

complete set of eigenvectors, «;

, given by:
af")(m, n) = 2sin (t17mhy) sin(izwnh,) myn=1,..,N,~-1. (2.3)

where ¢ = (¢1,42), and 41,43 = 1,2,...,N, — 1. The corresponding eigenvalues are:

4—2 cos (t37hy) — 2 cos (i97h,)

h? '

vP = (2.4)
As usual, the multigrid operators we consider are constructed from smoothers, G,
p=1,2,...,k and intergrid transfer operators, I;_l and I27!, p=2,3,..,k.
To simplify the analysis we choose Gp(-,-) to be a damped Jacobi smoother, defined
by

Gp(up, fp) = (I = 2wepAp)up + 2wep fp
= Gpup+(I—Gp)A;1fp (2.5)
where ¢, = h;“’,/S, p=1,..., k, and G, is the linear part of G,. We require that
0 <w< 1. Wedo not allow w = 1, which would correspond to a Jacobi iteration. The

constant, ¢, is approximately equal to the inverse of the spectral radius, p(A4,). In fact.

cppldp)=1-— O(hf,), and therefore ép is a contraction, i.e.,

p(I —2wepd,) < 1. (2.6)
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We define inner products and norms by:

(uP,0?), = by D uP(2)9%(z) (2.7a)
zelly
and
w?]I? = (uP,u?), (2.75)

for uP, v? defined on 7.

For the projection and weighting operators we take [ ;’_1 to be linear interpolation:
1 1 21
X, = I 2 4 2 , (2.8a)
1 2 1la,.

and I?~! to be the adjoint of I;__l relative to the discrete — L? inner products defined by
(2.7a):

L [Tz ot
-1 _
I;; 16 2 4 2 s (2.8b)
1 2 1],
P

where we have used the “distribution” and “collection” stencils as in [10].

In the eigenfunction analysis we need some notation and simple formulas. Let i =
(21,22). Define

P = cos? (h_gﬁ) (2.9a)
and _
P = cos® (QZ—hP) . (2.95)

A simple trigonometric identity gives us
€7 = (1 - 2¢P)y2 (2.10a)

and

nP™V = (1= 2pP)? (2.108)

e ettt At et At ta A, RPN e p e A e A e : R
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The eigenvalues of 4, can be written as
4(2 - EEP) - 775?))
2
h3

(P = (2.11)

A simple calculation shows us that the effect of the projection on the eigenvectors of

A, can be expressed as(?)

- -1)
I talP = P PPt (2.12)
K- The corresponding formulas for interpolation is
-1 (p)-
1 oPV = gPnPal - (1 - £ Pl ) (2.13)
(») (p)y . (P) (p) (P, (P)
; =& (1 -7 )O‘(ghN’_.‘,) + (1 - fi (1 - n; )a(Np—h.Np—ix) .
¥ Note that eigenvectors of A, are also eigenvectors of G,. The eigenvalue, gfp ), of
G, corresponding to a(P) , is given by
gfp) = 2we,pv (P), (2.14)
- where the constants ¢, are related by
CP_I = 4Cp. (215)

When we apply the multigrid algorithm, we transfer vectors to coarser grids. In the

process we lose information. In this two-dimensional problem with an (h-2h) grid structure

the four (if :; # Np/2 and i, # Np/2) eigenvectors Q:f:.u‘ -amp_‘.mz), (fl) N, —ia)
’ and a}) _, v _.,,» defined on QP are indistinguishable on 27~} . There are also 2V, 3
L eigenvectors as defined on P which are indistinguishable from the null vector as defined
N on QP~!. This phenomenon is what is referred to as aliasing.
:" This aliasing plays an important role in the analysis of the multigrid process and we
) introduce the following notation. Given two multi-indices ¢ = (7;.¢) and ; = (J1,J2).
v consider a( ) and agk). If agp) = ﬂ:agp) then we write i ~ j (p). If «'? and a(]”) are not
linearly dependent then : £ j (p).
(2) In the cases where | ¢ |:= max(i;,ip) > l/Np, one should replace a(p Y by its
proper (unique) representation, afp D where | i |< Np—. However, Formula (2.12) is
q also correct in this form.
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2.2 Intergrid Operator Identities

A multigrid cycle consists of smoothings and intergrid transfers. The smoother is
applied to reduce the high frequency (rough) components of the error. The residual is
transfered to a coarser grid where solving exactly for the error correction is less expensive.
By solving and then interpolating this coarse grid correction back to the fine grid, the low
frequency (smooth) components of the error are reduced. In the boundary value problem
(2.1), the eigenfunctions are easily identifiable as rough or smooth, being products of sine
functions. The same is true for the discrete operators, A,, 1 < p < k. To gain insight
into the properties of the multigrid process we study the effect of a multigrid cycle on the
eigenvectors of Ag.

Using formulas (2.12) and (2.13) it is clear that transferring aﬁ”) from 7 to QP!
and then interpolating back, results in a linear combination of the four eigenvectors which
alias from QP to 2P~! . A ‘smooth’ eigenvector, i.e. ffp ) and r;,(-’ ) close to zero, picks up
‘rougher’ components. In the full k-grid problem where there are 4*~! vectors aliasing
from Q% to Q! , keeping track of the aliasing is difficult. Fortunately, there are a few
simplifying features. The second of the following three Lemmas, in particular, simplifies

the analysis. Define

I = I::HI::I:}“'I;’;—I , 1< <pp<k. (2.16)

Lemma 2.1
If j~i(n)and j#£i(n+1) forsome 0 < n <k, then
0 if n<p<Lk;

n 517
(I &™) el e o), psn 17
m=p+1

k)
(@, o) =

Proof of Lemma 2.1
Let j~i(n)and j£i(n+1)for n,.0< n<k.

For p > n. the orthogonality of the afp) gives

8

1. -’ hC)
B N
A B

4.9,

14




.........

"\' TR TN R A At et f hey “ .S AR 0 . oSl ¢ N ap® Y N Wl
y

.
Ay
.

k
(! I,“’ag- ), =0. (2.18)

Y YYN

For p<n and : £ (0,0) (p),

v,
¢ (I2a®, o(™) —( II & ‘"") o™, a{™), (2.19)

N m=p+1

n
; = (IT &mn™) o),

m=p+1

Since I} = I?2 I}, then

& k
(afp),I,’:aS- )), = (I;‘afp),f,',‘ag- )),. . (2.20)

Using j ~ i (n) and (2.19) gives

(@ rp (k) =
(ai’I; Q; ( II

m=p+1

_’l {l_ l,’ l." '.".".

(m) (m)) o, [2alP) (@, al?), . (2.21)

TN
-‘\'l"'.

LR R

If ¢ ~(0,0) (p), then (2.21) is trivially true. N

Pk

)

Lemma 2.2

Foranyn, 1<n<k, and i #£ (0,0) (n),

> e i) =1, (2:22)

L J~i (n)

AP P

TANSSAS

\ Proof of Lemma 2.2

If n=kF then j ~ i (1) implies j = ¢. Since (a(.k) aﬁk))k =1, (2.22) holds for n = k.

H ?

Assume 3. . ,.q) | {a (s+1) LIt gk)),_,,l |=1 for s, where s < k.

Define

OO0

1 =i=(i1,i2), (
2 = (Nyy1 —11,12) ,
3 = (Nyg1 ~ i1, N1 — i),

= (21, Ngy1 — 12) .

oy
o
[ Q]
(28]
S—

DN A
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G
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»
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I
A
level s =k -2
g N
Figure 2.1: A splitting of the j, j ~ i (s), where s = k ~ 2. o
The set {j|j ~i(s)} can be split into four disjoint subsets corresponding to all
[
i~ (s+1), j~i(s+1), j~® (s+1) and j ~ 1% (s + 1). Figure 2.1 shows this 4
schematically for the case s = k — 2. Therefore the summation can be split as: \
k k P
Y @ ), = Y el ey | (2.24) .
j~1(s) J~i () N
N
(T s+ s+ 3) i
gl (s41)  ja~a? (a41) 0 g~t® (1) j~ard (941) i
(I e el ) | 8
10 .
"
®

-
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(s+1)

Using (2.13) and the orthogonality of the o , the summation can be written as:

k +1 k
> e Lol | = € N et [ elP) 4 D)

J~i (s) J~il (s41)
+ +1 +1 k
+ (1=l N @Y ) |
J~i? (a41)
+ +1 1 k
FA=ENA =) 3 el a1 |
J~i3 (s+1)
+1 +1 k
+(EN =2l Y @@ el )
j~it (s+1)

By the inductive hypothesis, each summation on the right hand side is equal to one and

the coefficients also sum to one. N

Lemma 2.3

Foralln, 1<n<k, and i £ (0,0) (n),

S 1@ IralP), j= 1~ gt yintD (2.25)

J~i (n)
iBi (n41)

Proof of Lemma 2.3

Identity (2.25) follows directly from Lemma 2.2 since

Yoo e el = Y 1l Iral™) |

j~1 (n) J~i (n)

JAi (n41)
{n+1 +1 {(n+1 k
-&" )m(n ) Z | (a{® ) In+l ( ))n+l |

i a;
Jj~i (n+1)
1- é"(."+1)17£"+1) 1
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3.1 Definition of the Preconditioner
The multigrid preconditioner is based on the discrete five point Laplacian. M is one
standard multigrid symmetric V—cycle starting with zero as the initial guess, except that
the coarse grid correction is obtained by smoothing instead of by solving exactly on the
coarsest grid. Having choosen a fixed number of grids, k, the multigrid preconditioner is
defined recursively. Choose a positive (integer) number of smoothings, r. Then M, f; := :
g where &, (= Mpfp), for f, defined on 2P, p=1,...,k, is given by:

1.) Smooth r times starting with initial guess = 0:

ip = G, (0, fp). (3.1a)
2.) Compute the residual and transfer to the coarse grid:
rp = fp = Apllp, fo—1 = I371r,. (3.1b)
3.) Compute the coarse grid correction:
f p=2, o1 =9 =G3(0, f1) (3.1¢)
If p>2 Gpey=My_fpur. (3.1d) p

4.) Add the coarse grid correction:
B = Gp+ 17 Upey. (3.1e)
5.) Smooth r times starting with initial guess = i,:

Gy = G5 (iip, fp)- (3.1f)

Because we have started with an initial guess of zero, the multigrid preconditioner is

a linear operator acting on fi. This definition of M can be rewritten as: k
My=(I=G¥)A;  + G IP_ M, IP7'G, p=2,. ..k (3.2) -
and M, =(I-G¥)A7".
These identities rely on the commutivity of G, and 4,. p=1.2, ... k. b
12
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3.2 The Problem

As remarked in the introduction, it is sufficient to examine the effectiveness of the
multigrid preconditioner by considering the model problem (1.3). We take Q = (0.1) x
(0,1) and ¢ real and small. It is for this model operator, A5 = —¢2A + I, that we prove

our basic results.
Define

t=e?Ar+ I (3.3)

Writing the symmetric preconditioner as My = QiQk, the preconditioned system is

ell

45'v' = F' where A}’ = QxA5Q}. Experimental evidence suggests the following:

Conjecture: .
Let r>0,0<w<1, >0 and € > h. Choose the number of grid levels, k, so
that hy = 2¥~1h ~ ¢. Define M} = M, . Then there exist constants ¢;, ¢z > 0 such that

C152 < /\min (MI: f;) < Amax (M;fAi) < 5252-
What we prove in this paper is:

Theorem 3.1

Let r=1,2,3,4and w=.7,8,90rr=2,3,4and « =.5,.6. Let A > 1/8192 and
€ > h. Choose k so that hy = 25~1h ~ ¢. Then there exist constants ci(h), ea(h) >0
such that

c1(h)e? € Amin (MFAS) < Amax (MFAL) < ca(h)el. (3.4)

Remark 3.1

For fixed ¢, r and w, numerical evidence indicates that, as h — 0.
Cl(h) —c¢; >0

ca(h) — c3 > 0.

Remark 3.2:
Since A’ is similar to M} A%, (3.4) implies that N'(45") is bounded independent

()f £.
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Proof of Theorem 3.1:
Define

Bij = ( M (EzAk + I) afk), agk) Yk (3.5)

k)

(

Because of the aliasing, u,; can be nonzero for j # .. However if i £ j (1) (i.e. a;" and

(k)
J

a;’ are distinguishable on the coarsest grid) then u;, = 0.

Choose m = (my, my) where |m| := max(m,, my) < Ny.

Let 71, J2,..., Jsqs-1 be some ordering of the j ~ m(1).

We now define M, to be a 4F=! x 4¥~! matrix given by

(/Mm)p'q = Hipie-

We consider the subspaces

Sm: = linear span({agk) : j~m(1)}>, (3.7)

where |m| < N. The Sm are orthogonal (with respect to the inner product defined by

(2.7a)) subspaces and invariant under M(e?Ax + I). Therefore if we show that

6162 < Amia (/Mm) < '\max(dwm) < C2€2

for each m, then (3.4) will be proved.

By the Gershgorin theorem, any eigenvalue, A, of .M,, must satisfy

A=l €D nl
~v (1)
J#r

for some 1 ~ m (1).

We show that .M, is diagonally row dominant and therefore we can use information

about the behaviour of the diagonal entries of .M, to prove i3 3). Specifically. in Sec-

tion 3.3 we give a computable formula. (3.22). for a quantity C} . . independent of -,

such that
. Z l“')l < C;u‘k,r,.. Hay i3.101

J~s (1)
) 1#

'''''''''''''''''
...................

....................................



For certain choices of r and w, C,‘; k,rw Das been computed, for every i, showing that
Chkrw = Sup; C,,,”w < 1 for the k = 2,3,...,12 grid problems, using h = 27! to
h = 2713 See Section 3.4. In Section 3.5 it is shown that 3¢,Z > 0 such that

2 . ~ 2
ce® € min u; < max < ¢ee“. 3.11
= fem S R S (3.11)

Combining (3.9),(3.10) and (3.11) we have, for any eigenvalue, ), of M,,,
(1 - C—'h,k,r,u) 252 <AL (1 + c-:,h,lc,r,u.v) 6527 (3-12)

which verifies (3.8) with ¢; = (1 - Cj rw)cand c; = (1+Chx rw) €

Note that a common factor, &2 ( )

(3.10) is equivalent to

+ 1, appears in all the u;j, 7 ~ 7 (1), therefore

> | (Ma ol | < Chiru ( Mial aP), (3.13)
Let
D; := (Mia!®, al¥),. (3.14)

3.3 Bounds on the Off-Diagonal Elements of AM,,

When applying a multigrid-type cycle to an eigenvector, a(k)

(k)

, of Ag, the resulting

(k)

vector, Adka( ), is a linear combination of o, and all of the other eigenvectors, a,’,

k)

which alias with 0‘.‘ on the coarsest grid. In this section we give a formula for a bound

on this aliasing. Specifically, we find an expression, Ch k.ro» Where

Jo= 3 [(Meal® 0¥ )| < G (Mial® 0l ), (3.15)

) H A |
g~ (1)
I#

Let : = (11, 12),h, k,r and w be fixed.

Yefine

L rh
£, = cos? ("” P (3.16a)

] lh
7p = cos? (QT P) (3.16b]




.......

(3.164)

and v, = (A,a!? alP )ps (3.16e)

where the i,7,h and w dependence has been suppressed in the notation and only the grid
level is displayed.

The following lemma gives a formula for any entry in the row of M,, corresponding

to ¢, where : ~ m (1).

Lemma 3.1

For any j ~ i (1),

&

k k

k k r k-~ k

(Alkaf )3 ag ))k = 2wci E €p < H 4gm£mnm) ( ® I:+1Gp+l ) I IGr ‘ ))p
=1 m=p+1

(3.17)

Proof of Lemma 3.1

A proof by induction shows that for every s, 2 < s <k,

L ’
(Maa,”, §”>,=zwc,2ep< I1 4gmsmnm>-< LGy BT GleY),

p=1 m=p+]

(3.18)

Taking s = k gives (3.17).
For s =2, (3.4), (3.16) and (2.12) give

(Mya!® 3(2))2 = ((I-G3) A7 al? o'y,

3 bi ' J

+((I-GY) AT [ Gl 1)Gya' ™),

(2) (2)

1) r (2)
= 2uczeg(a \Q, )2 + 2weye 1 g2€am o, [ Gra)" )y

Substituting 4c; = ¢;, proves (3.18) for s = 2.

.................................................................
...................................
.................................
............................

-----
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Assume (3.18) is true for s — 1 grids, s > 2. For the s—grid problem, (3.4), (3.16)
and (2.12) give

(Mye?,a5?), = (I - G37) AT (", of),

+ (Moo 130656, 171 G,
(3.20)

2weyey(al? a(j’)),

+ E41595(My-1a'?, I,"IG:ag’)),_l.

Using the inductive hypothesis with I s=1GrolY replacin alr™ , and using 4¢, = ¢y
g s 7 g ]
proves (3.18). 1

Lemma 3.1 can be used to get an expression for J;, but the summation over all
J ~ 1 (1) would be difficult to compute. Theorem 3.2 shows that J, can be bound by an

exprussion which is no more complicated taan the expression for D; = (M, kafk), afk))k.

We claim that the J; can be bounded by an expression which is no more complicated

than the expression for D; (= (Mkafk),afk) Vi) :

Theorem 3.2

(3.21a)

o
S
I
(%)
(3
3
n
[\’Jn-
o
~
N
o £
N
]
aM
3w
3
SM
N——”’

k- k k
by J, < 2wek Zl €p (l - I1 f,,.nm)) ( I1 4Igm]£mr)m>. (3.21b)
m=p+1

m=p+1
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L Proof of Theorem 3.2

n a.) Using Lemma 3.1 with j = i, combined with equations (3.16c) and (2.12) proves
' (3.21a).

(9 )

b.) To prove (3.21b), split the grid levels by partitioning the j ~ ¢ (1), 7 # ¢. See
Figure 3.1 for a schematic illustration for ¥ = 3. Foreach n =1,2,...,k—1 consider

the j’'s such that j ~ i(nr) but 7 £ ¢ (n+1). Lemma 3.1, Lemma 2.1, Lemma 2.3
and (2.6) lead to the following bound:

k-1
- k) k
L=Y Y M7, oP) (3.22)

n=1  j~i (n)
N J#i (n+1)
. k-1 n n k

< zwckz(l - §n+1nn+l)zep ( H fmnm) ( H 4|gm|£m77m) :

n=1 p=1 m=p+1 m=p+1

Changing the order of summation gives

N k-1 k-1 n
¥ J: < 2weq Zep [Z (1 - En+177n+l) H lgmlfmnm} (3-23)

p=1 n=p m=p+1

: k
. ( H 4|9m}£mnm>~

m=p+1

Observe that the quantity in square brackets can be simplified to:

k
1- H EmNm. i

m=p+1

18
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Figure 3.1: A splitting of the j, j ~i(s), 7 # 1.

x  j~i(l), J£1(2)
©  j~1(2),5#1(3)
A j~i(3)

Remark 3.3

The constants C—'h‘k,,.,u can now be expressed as

Ch,k,r,u = Sup (Cz,k,r,u) .

kilel’(l_ I’EI £m77m>( ﬁ 4lgm|£m’7m>

mz=p+1

where

k k
> €p [T 49%62n%

p=1 m=p+1

Note that the denominator has one more term in the sum than does the numerator.
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3.4 Computed Values of the Off-Diagonal Bounds

Ideally, one would like to find analytic bounds for C,';’ k,rw+ independent of 2,h and
k. On the other hand, bounds are easily computed for any given h, k,r and w.

Figures 3.2-3.5 indicate the dependence of C}, ., on ¢ = (i1,i3) for A = 1/64,
r=1, w=.8 and k=2,3,4 and 5 grids. The maximum is taken on the boundaries 7; =1
or i, = 1. Along the boundary i; = 1 there are 2¥~2 relative maxima for the k-grid
problem. (For all values of h,k,r and w tried, the maximum of C' was attained at (1, ¢3)
and (12, 1) for some 1;.) Figures 3.6-3.9 show the dependence on r for k = 4 grids.

Tables 3.1-3.8 give the calculated bounds, supy;;<1/a (C,';‘k‘r,w) , for w = .5, .8 and
r =1,2,3 and 4. The multi-index at which the supremum was attained is listed below the
bound.

To find bounds for w = 8 and r = 1,2,3,4, independent of A and %k, we used
h = 1/8192 (which means > 67 million points on the fine grid). These numbers are
bounds for all & > 1/8192 and all k¥ corresponding to these meshsizes. Observing the
asymptotic behaviour leads one to believe that they are also bounds for all A < 1/8192

and any number of grids, k. See Tables 3.9-3.10.

e Salk Sl Nalh Aol bl




2 GRIDS

‘

|
i

)

3 GRIDS

——
—
-

w =.8

)

)

1,

C:\.k.f.w fot h = 1/64, r

Figure 3.2:
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l,w=.8

Chirw for h=1/64,r

Figure 3.3:




Figure 3.4: Cj,,  forh=1/64,r=1,w=.8

Figure 3.5: C;,  forh=1/64,r=1,w=.8
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Table 3.1 Ch.k.r,u

w=.5,r

---------

..............................

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .4640 7165 8026
(1,9) (1,11) (1,11)
1/32 .4688 .7530 9484 1.025
(1,19) (1,22) (1,21) (1,11)
1/64 4707 .7632 .9942 1.149 >1
(1,37) (1,45) (1,41) (1,21)
1/128 4712 .7669 1.004 >1 >1 >1
(1,74) (1,89) (1,81)
1/256 4712 .7669 1.006 >1 >1 >1 >1
(1,149) (1,178) (1,163)
1/512 4712 7671 1.007 >1 >1 >1 >1
(1,298) | (1,357) | (1,325)
Table 3.2 Chxro w=.5,r=2
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 ..3115 .4296 .4680
(1,9) (1,5) (1,5)
1/32 3196 .4574 5441 3573
(1,17) (1,10) (1,11) (1,11)
1/64 3215 .4658 .5700 .6084 6142
(1,35) (1,19) {1,22) (1.21) (1,11)
1/128 13220 .4680 B771 6277 6591 6643
(1,70) (1,39) (1.44) (1,23) (1,21) (1,21)
1/256 3271 .4685 5790 .6349 6741 .6856 6376
(1,139) (1,77) (1,88) (1.45) (1.41) (1,43) (1,43)
1/512 3221 .4688 5795 .6368 6782 6923 6997
(1,278) {1,155) (1,177) {1,91) (1,82) (1.86) (1.43)

:




Table 3.3 éh,k,r.u w=.5,r=3
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .2200 .2998 3102
(1,7) (1,5) (1,5)
1/32 2271 .3283 .3484 .3581
(1,15) (1,9) (1,5) (1,5)
1/64 .2285 3346 3694 3961 .3981
(1,31) (1,18) (1,10) (1,11) (1,11).
1/128 .2289 3362 .3756 .4093 .4165 .4170
(1,61) (1,36) (1,20) (1,22) (1,21) (1,21)
1/256 .2290 3367 3773 .4130 .4243 .4297 .4302
(1,123) (1,71) (1,39) (1,44) (1,23) (1,21) (1,21)
1/512 .2290 3368 3777 4139 .4279 .4356 .4366
(1,246) | (1,142) | (1.78) (1,88) (1,46) (1,41) (1,42)
Table 3.4 Chrrn w=.5,r=4
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .1689 2253 2368
(L7) (1,3) (1,3)
1/32 1732 .2481 2659 .2684
(1,14) (1,7 (1,5) (1,5)
1/64 1747 .2550 .2823 .2876 .2880
(1,27) (1,15) (1.9) (1,10) (1.9)
1/128 .1749 2567 2868 2945 3013 3016
{1,54) (1,31) (1,18) {1,20) (1.11) (1,11)
1/256 1750 .2570 .2880 2971 3081 3089 .3090
(1,109) (1,63) (1.35) (1.19) (1.23) (1.19) (1.19)
1/512 1750 2571 2883 .2982 3099 3125 3131
(1,217) {1,126) (1,70) (1,38) (1.47) (1.25) (1.26)




Table 3.5 éh,k.r,u

2 grids

2801
(1,5)
3448
(1,9)
3565

(L,17)
3581

(1,34)
3586

(1,68)
.3587
(1,136)

3587
(1,273)
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Table3.8 Chiro w=38,r=2
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .1954 .2552 .2640
(1.7) (1,3) (1,3)
1/32 .2001 .2840 .2993 3013
(1,14) (1,7) (1,5) (1,5)
1/64 .2013 .2932 3223 3252 .3268
(1,28) (1,15) (1,9) (1,10) (1,9)
1/128 2016 .2956 .3285 3337 .3387 .3389
(1,55) (1,31) (1,17) (1,20) (1,11) (1,11)
1/256 .2017 .2961 3299 3387 .3473 3499 .3500
(1,111) (1,63) (1,34) (1,18) (1,21) (1,19) (1,19)
1/512 .2018 .2963 .3304 .3402 .3497 3537 3538
(1,222) | (1,027) | (1,69) (1,36) (1,42) (1,39) (1,38)
1/8192 .2018 .2963 .3305 .3407 .3505 .3550 3581
28




Table 3.7 C)\_k_,-._, w =3 , T =
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 1353 .1880 .1891
(1.6) (1,3) (1,3)
1/32 1385 .1993 .2077 .2088
(1,12) (1,7) (1.3) (1,3)
1,64 .1393 .2032 .2233 .2240 .2243
(1,24) (1,13) (L7) (L7) (1.7)
1/128 1395 .2044 2267 .2296 .2303 .2307
(1,47) (1,27) (1,15) (1,7) (1.7) (1,7)
1/256 .1396 .2046 2278 .2339 2341 .2353 .2353
(1.,95) (1,54) (1,29) (1,15) (1.14) (1.14) (1.14)
1/512 1396 .2047 2281 2348 2357 .2369 2370
(1,189) (1,108) (1,58) (1,30) (1,15) (1,27) (1,29)
Table 3.8 Chx,., w=28,r=4
h 2 grids 3 gnds 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .1039 1441 1482
(1,5) (1.3) (1,1)
1/32 1057 1531 .1628 .1629
{1,10) (1.6) (1.3) (1.3)
1/64 1067 .1557 1705 1716 1716
(1,21) (1.12) {1,6) (1.6) (1.6)
1/128 .1068 .1563 .1736 1761 1762 1762
(1.42) (1.24) (1.13) (1.7) (1.6) (1.7)
1/256 .1069 1565 1742 JITRR 1795 1797 1797
11.84) (1.48) (1.26) (1.13) (1.13) (113 {1.13)
1/512 .1069 1565 A744 1795 1803 JIROR 1810
(1.168) (1.95) (1.51) (1.27) i 1.251 (1.13) (1,13}
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Table3.9 Chi,. w=.8,h=1/8192 2
r 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids -
1 .3587 .5196 .6284 .6945 .7487 .7638 X
2 .2018 .2963 .3305 .3407 .3505 3550 -‘:: )
3 .1396 .2047 2282 2351 .2370 2375
4 .1069 .1566 1745 1798 .1812 .1818 -,

r 8 grids 9 grids 10 grids 11 grids 12 grids 13 grids
‘s
1 .7800 .7896 .7933 .7953 .7948 .7951 -
2 .3581 3589 3590 3592 3592 3952 ko
3 .2390 2394 2398 .2398 2398 .2398
4 1821 .1824 .1825 .1825 .1825 .1825
Table 3.10 Chi,. k=12, h=1/8192
r v =5 w=.6 w =7 w=.8 w= 9 by
1 > 1 > 1 980 795 648
2 721 554 439 .359 .305 B
3 444 345 282 240 210 -}-
4 318 254 212 183 161 )
®
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3.5 Bounds on the Diagonal Elements of .M,

Recall that the diagonal elements, u,,, of M, where 1 ~ m (1), are given by,
e = (MiALal® o), (3.25)
Since A§ = £24; + I and hence
g = (2F +1) D,, (3.26)

the bounds on the u,, can be obtained from suitable information about the D,’s. The

following characterization of the effect of the preconditioner on smooth and rough eigen-

vectors of A; is central to the analysis and was given by Goldstein in [7).

Theorem 3.3
For r > 1, w suitably chosen and % sufficiently small, the D,’s are positive real

numbers such that:

a) D, = 0(h?}) for ¥ < d/R? (3.27a)

by D, = A=n ¢ v > d/R? (3.27b)

0
where 0 < n < 1 and 7 is independent of A and d is a constant.
We prove a more explicit version of the same result:

Theorem 3.4

For r > 1, 0 < w <1 and a fixed constant, d, where %< d<2, ;

w(l - w) 2 2rw (k) d
B2 < D, < Y2 g 2 3.28
max (2.d(1+rw)) ’ = Di s 3 o e s h} (3:2%2) >
dw(1 - 1 d ;
b.) _._w(_“)_()k_). < D, < - for u:k) 2 5 (3.28b)
8(1 + rw)y, v, hi p

Proof: in appendix.
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These theorems give us bounds on the u;;, and, for example, Theorem 3.4 leads to

the following bounds:

(k) d w(l — w)h? 2rwd ( 2 h%)
— < < =L
For < h%’ max (2,d(1 + rw)) ~ Hu = 3 <+ d (3:292)
2 2
(k) > d dw(l - w)s < 2 hl 5
For v, 2 —hf , ——————8(1 T o) S pi S e+ i (3.29b)

Therefore, taking h; = ¢, we prove (3.12).

Using the diagonal dominance of the matrices, M,,, we can estimate the dependence
of the condition number of Mi(e? Ax + I) on the ratio a = h?/e? from the behaviour of
the diagonal elements, u;;. From the inequalities (3.29) we get an estimate for the choice

of a which minimizes the condition number:

1/ 3\?
Qoptimal = g (-) . (3.30)

2rw

This predicts that the optimal number of grids decreases as the quantity rw increases. One
can also use (3.29) to show that it is better to choose too many grids, (a > a,p ), rather
than too few, (& < aopt ), (see Figure 3.10). These observations all accurately describe the

experimental results — see the next section.




veere

iV o & o

(l

o

approximate
condition
number

AR

7o

f

1‘“1','{‘!

e

.':‘

RN I
» e e &

Q)

» 2wy
-

) [N ".4 ‘y .'n

a = h?/e?

-

PV AN

Figure 3.10: The condition number estimated from the diagonal terms.

~

K3

'y ", }' r

". e, .:.]. "

..
.

33

.

@

P '.". '.




‘e R e h Rl Bl B8 Bk G Bk el el ek “Nald ‘had’ - a r 3 ok Call Sal 3
B A P d e el ' W i tate), v Hamn Sal 0o Aol 20000 0 Q U U

fa dls

4. Multigrid Preconditioner — Experimental Results.

Our numerical computations were carried out with three objectives in mind:

J‘ l.., ’,"

i) Observe the optimality of taking the meshsize on the coarsest grid, h; , to approx-

imate the singular perturbation parameter, ¢.
ii) Check the boundedness of the condition number of the multigrid—preconditioned

system as € and the fine grid meshsize, h, decrease.

RN

iii) Compare the efficiency to other fast solvers, in particular, the corresponding multi-

grid algorithm used as an iterative solver.

e X
(]

We discretize the boundary value problem:

L'..'.:'.

{ tu=(—e2A+Nu=f in Q=(0,1)x(0,1) (4.1)

u=0 on 99,
on a grid of uniform meshsize, %, as in Section 2.1. Using the multigrid preconditioner, M},
as defined in Section 3.1, we iteratively solve the discrete problem using a preconditioned
conjugate gradient algorithm. Recall that k is the number of grids used in the multigrid
algorithm, Ay = h, and the smoothers, G, ,1 < p < k,used to define M, depend on the

damping parameter, w, and a fixed number of smooths per iteration, r. We solve

(ezAk +I)uk =Fka (42)

2a

starting with initial guess, u). We call this iterative solver PCCG(-A,sm). The “A”

rdl A

reminds us that the multigrid preconditioner is based on Aj, the negative of the discrete
Laplacian, and not on the operator 4 = ¢?A4; + I and “sm” indicates that we smooth
instead of solving exactly on the coarsest grid. Experimentally, we find that a reasonably
- good choice of r and w is r = 2 and w = .8 (w = .8 is optimal for the corresponding
2-grid multigrid solver, see [12]).
We first consider solving (4.2) with Fx = 1. For h = 1/64 we show the dependence
of the number of iterations required to reduce the norm of the residual by a factor of 1076
on the choice of ¢ and h;. See Table 4.1 . For given ¢ and h, the number of iterations
listed is the largest observed for various choices of u}. Note, in particular, the cases where
hy = ¢.
X Table 4.2 displays the number of iterations required to reduce the relative error by a

factor of 10~% for various choices of h and ¢, taking h, = ¢. Here we used F; =

34
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Finally, we compare the efficiency of PCCG(~A ,sm) to other elliptic solvers. We

take h = 1/64, € = 1/8, Fx =1 and an initial guess consisting of a smooth and a rough

L |

component, namely:

u) = 10 + 20 cos(64nz) cos(64my).

We consider a symmetric V-cycle, which is a fast iterative solver for equation (4.1), where

we solve exactly on the coarsest grid (we use a symmetric band solver to invert €24, + I).

We denote this algorithm by MULT. For comparison, an (extreme) choice of a precondi-

tioner for the preconditioned conjugate gradient algorithm is considered, where the pre-

conditioner is based on Af instead of Ax and we solve exactly on the coarsest grid. In

other words, this preconditioner consists of one cycle of the solver, MULT, starting with

initial guess of zero. This algorithm is called PCCG(-e2A + I,s0). Of course we expect

the behaviour of this preconditioner to be better than that of the simpler (—A ,sm) pre-

conditioner, but we have the added expense of a coarse grid solve and (slightly) more

complicated operator. Of interest to us here is that PCCG( —¢2A + I ,50) is not a signif-

icant improvement over PCCG( —A ,sm) if the optimal choice of the number of grids is :

used.

In a conjugate gradient algorithm, the error reduction factor, ||ek||/||ex-1]], typically

decreases as k increases, whereas for a multigrid algorithm the error reduction factor

increases as k increases. Therefore the preconditioned conjugate gradient routines wiil

be more competitive when a large reduction in the relative residual is required and the

multigrid algorithm is more competitive when a smaller reduction in the relative residual

1s required.

We also observe that increasing the number of smoothings per grid level will im-

prove the performance of MULT more than it will improve the performance of the

. PCCG(—A ,sm) algorithm. Similarly, optimizing the choice of the damping parameter,

w, will improve MULT more than it will improve PCCG( —A sm).

Furthermore, one should keep in mind that, though it is difficult to improve the

behaviour of the multigrid preconditioner, it is quite obvious how to improve the multigrid

solver. Using better smoothers, or using a full multigrid algorthm (FMG) will dramatically

improve the convergence rate. )

Our first comparison is made with parameters which should give the PCCG( -~ A sm)

35
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algorithm an advantage. We therefore consider a relatively inefficient choice of the damping
parameter, w = .5, and require the norm of the residual to be reduced by a factor of 10712,
The total cpu time (seconds) is recorded in Figure 4.3, with the number of iterations given
in parentheses next to the time. The PCCG(-A ,sm) algorithm appears to be competitive
with MULT, at least for this meshsize, h. The PCCG(-e2A + I,s0) algorithm is only
slightly faster.

We then take a more reasonable value of w = .8 and require the norm of the residual
to be reduced by a factor of 107%. The total cpu time is recorded in Figure 4.4. The
multigrid solver, MULT, is now the best choice.

All computations were done on a VAX 11/780.

We end this section with a few comments on the choice of using multigrid by itself as

a solver, or using multigrid (based on a simpler operator) as a preconditioner:

— For the model problem (8.1), our experiments indicate that, for modest values of h
and €, a good multigrid algorithm is more efficient than a multigrid-preconditioned

conjugate gradient algorithm.

- In a true variable coeflicient problem, (1.1), the multigrid preconditioner has the ad-
vantage of being based on a constant coefficent operator. In this case, using multigrid
as a preconditioner should be more competitive than in the model problem case. It
is doubtful whether the multigrid preconditioner could outperform a good multigrid

solver even in this case, but more testing would need to be done.

- In an indefinite problem, where multigrid solvers are more troublesome, one of the

preconditioned conjugate gradient routines for indefinite problems might be preferable.
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Table 4.1

Optimality of choosing A, = ¢.

Largest (observed) # of iterations required for ||ri||/|lr2|| < 107€.

Table 4.2 Boundedness of condition number independent of A and ¢ taking ¢ = h; .

Largest (observed) # of iterations required for ||ux — uil|l/|lux — u|| < 1075.

.........

Fr=1l,w=8,r=2
hq e=1/2 e=1/4 e=1/8
1/32 > 20 > 20 20
1/16 12 12 10
1/8 9 8 8
1/4 7 7 9
1/2 7 8 9

1/32
1/64
1/128

...........

-----

........

.....................

.........
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Table 4.3 Experimental comparisons of approximate cpu time (sec).

Approximate cpu time (no. of iterations) required for ||resifl/|iresol| < 10712

e=1/8 ,h=1/64 ,ul =10+ 20 cos64mz cos64ry
k

# of grids MULT:V(2,2) PCCG(-A ,sm) PCCG(-€?A + I 50)
2 61.3 (20) ~ (>20) 53.4 (10)
4 44.2 (21) 406 (11) 392 (10)
6 44.4 (?1) 44.8 (12) 39.5 (10)
Table 4.4 Experimental comparisons of approximate cpu time (sec).

Approximate cpu time (no. of iterations) required for |[resi||/||reso|l < 1078.

Fy

l,w=.8 r=2

e=1/8 ,A=1/64 ,u) =10+ 20 cos64mrcosbiry

# of grids MULT:V(2,2) PCCG(- A .sm) PCCG(-<’A + [ 50
2 24.3 (6) 499 (14) 352 (5)
4 143 (6) 224 (5) 296 (5)
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5.1 V-cycle Convergence Bounds ';f-
>
. . . . . \
In this section we briefly describe the results of applying the same techniques, in :;:
J
particular Lemma 2.2, to obtain bounds on the asymptotic convergence rates for multigrid P
V-cycles used to solve the Dirichlet problem for Poisson’s equation in the unit square. The ::
~
analysis is simpler in this case because we don’t need diagonal dominance. Instead, we "
numerically evaluate the || - ||, norm of the appropriate matrix (i.e., the largest row sum &
of absolute values) which is a bound on the spectral radius. We present the details of this 7
analysis in Section 5.2. We first define our basic multigrid V-cycle applied to the linear "::
system
B Uy = F; (5.1) P
starting with initial guess, u}, with auxiliary problems, B,U, = f,, p=1,2,... k-1,
corresponding to discretizations on the coarser grids.
1. Initialize:
fi — Fi '_
-.\
0 -
Ug — Ui (\’
.
i
2. Update:
ugp — Uk

where each @,, p=2,3,...,k is defined recursively by:

(a.) Smooth r times starting with initial guess = u,:
up = G;(ups fp) (5.2a)
(b.) Compute the residual and transfer to the next coarser grid:

Tp = fP - Bpﬁp» fp—l = I,I:—lrp (5.2b)

{(c.) If p> 2 then return to (a.) to evaluate @,_y. If p=2 then:

a4, = B fi (5.2¢) j:j:
\::
(d.) Add the coarse grid correction: :::
.9
Up = ity + Ih_yilp—y (5.2d) ]
39
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(e.) Smooth s times starting with initial guess = 4,:

>y ¥ s

iy = Gp(ip, fp) (5.2¢)

For the model problem analysis, we take Q,, A,, I;_,, I;"l and G, as defined in

Section 2.1.

A s A,

5.2 Error Analysis

Bounds on the asymptotic convergence factors of the multigrid cycles M\, s, can
be found in the following manner. Let e = Uy — ui be the initial error and & = Uy — @
be the error after one multigrid cycle, where U, satisfies A Uy = fi . In terms of the

errors, definition (5.2) becomes:

(a) Forp=k,k-1,---,2

(b) For p=1

(c) For p=2,--,k

Ep=Ep—IP (epoy — Epuy) .

Recall that G p 1s the linear part of G,. If M key = & , then M* is defined recursively
by:
MP=Gy—-I0_(I-MP VAL IP7'GhA,, 2<p<k (5.3a)

M'=0. (5.3b)

Note that the‘afk) are eigenvectors of 4; and Gy , but not of M* . Define

Si = linearspan {aﬁh i~ (1)} . (5.4)

By formulas (2.12) and (2.13) we see that the S; are orthogonal subspaces which are

invariant under M* . Therefore a basis of eigenvectors, {v.} , of M* exists such that

(k) : ;
v“=2 9 (3.9) .

J~i (1)

each v, can be written as

o
Tt
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for some ¢,| 1 |< Ny, where a;, ¢ R. Since the afk)

are orthonormal with respect to the

discrete L, inner product, then

k_ (k) k
(M, 0,0 = ( Z a;uMta;, Z amuall ),

jooi (1) m~i (1)
] k -
= Z Cmyu Z aj“(‘M"ag'), ( ) = z a? (5.6)
m~i (1) j~1i (1) n~i (1)

where A, is the eigenvalue of M* corresponding to v, .
A bound on the A,’s will be a bound on the asymptotic convergence rate of the
multigrid cycle. Let M, be the 45~ x 4¥=1 matrix with (M,),, = (A/I"agf),a(j:))k with

J1,J2,* * Jar~1 some ordering of all the 7 ~ 1 (1).

Remark 5.1 Note that for some :'s, these j,’s are not necessarily unique. For example,
if 1 = (Ni/2,1) then (Ni/2,1) = (Np = Ni/2,1)

Remark 5.2 The diagonal elements of M, are the Rayleigh quotients,

and the off-diagonal elements are the contribution from the aliasing vectors.

By Gershgorin’s theorem, any eigenvalue A of M, must satisfy

A= (M o)1 YT (MRl ol | (

7

[41]
-1
~—

J~n (1)
J#n
for some n ~ i (1) . Therefore a bound on the asymptotic convergence rate. p , is given

by

< max max ‘M"a“‘),a(k) >
ps max (max T (ralal)

~i (1
§ '()J*‘"(l)

= max Y [(M*al ") (5.8)

: J
<Ny &
j~i (1)

for the k-grid problem with meshsize Ay = 1/N) on the fine grid.

In section 5.3 we derive formulas for a bound on the righthand side of (5.8).




} -------- i d - » L]
{
>
.
: 5.3 Derivation of Bounds on the Convergence Rate
' For a fixed fine meshsize h, a given number of grids k, r smoothings and a damped
* Jacobi parameter w, we derive formulas for a constant Ci 4. < 1, independent of ¢
N which is a bound on the asymptotic convergence rate. In Section 5.4 we give values of
< these constants for various values of h, k and r using a typical value of w.
\
s By (5.8) it is enough to bound Z I (M"agk),agk))k | independent of : . Divide
j~i (1)
: the sum into two parts,
.
N () (k) ko () (k)
N Y MR o) | = (MFaP o), | (5.9)
)~ (1)
. k k
: + 2 HMEa® afP) |
s j~i (0)
i#i
= Di+Ji,
- where D; is the “diagonal part” and J; is the “aliasing part” of the sum.
. Let 1 = (1;,13), k, 7, h and w be fixed. Define
1y mh
£ = {f") = cos?® (—1 > p) , (5.10a)
i9h
: 7 = n{?) = cos? (—2 d P) , (5.106)
4
- gp = (G;agp),afp)), , (5.10¢)
r—1
ep = ((ZG;',)aEP),aEP))p (5.10d)
. =0
. and
X _ -
vp =, (5.10€e)
by where the 1, r, h and w dependence has been suppressed in the notation and only the
-\
N grid level 1s displayed.
n,

We have the following theorem.




Theorem 5.1

k-1 k
_ . 2 2 _Cka
D; = 9k—2u-cka Z fp( H 4gm€mnm> v

p=2 m=p+1

k
( II 4gm£3nn3n). (51la)
m=2

and

k-1 k k
Ji < 2wervg pr(l—( H fmnm))( H 4|gm|£m’7m> (3.11b)

p=2 m=p+1 m=p+1

k k
+'::‘ (1 - (] 5mnm)> ( II419m1 smnm)

m=2 m=2

Remark 5.3 Theorem 5.1 allows us to obtain a bound on the asymptotic convergence

rate that is no more complicated than the diagonal elements themselves.

Before proving Theorem 5.1 we find expressions for the inner products

k) (k
(A/Ikai ),ag ))k.

Lemma 5.1

For any ; ~ ¢ (1),

k—1 k
5 Y © g (p) (k)
(A\/Ika‘ )’a) )>k = gk<0£ wag )k - 2WCkl/k Z fp< H 4gm€mnm> (alp ‘[EQJ )p
p=2 m=p+1
Crl k
_Ckyk( H 49mfm'lm)(aﬁn.lkl.a(jk))l . (5.12a)
11 m=1
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Proof of Lemma 5.1

We prove by induction that for every s < k.

s—1

s
ol ( (),
(M?a)’ ()s)>’ = g,(a(,”,a)’)>, — 2wC,v, E fp( H 49m£mflm> (atP’.If(JJ ',)p

m=p+1

C, s -
Y ( H 4gm5mnm> (@ 1}al"y . (5.126)

(4R

Taking s = k gives (5.12a).
We start with s = 2 From (5.3), (5.10) and (2.12),

(2) (2) r (1) (2) - (2) (2) -
(.W2c1zI La, )2 = (Gja, ,a, )2 — (A3 II;G;Aga, ,Izlaj M (5.13)
(2 (2) & (1) 2)
= ga{a, )va] )2—792€2U2 (a, 712101(, M-
1

Using 4c; = ¢; gives us (5.12a) for k = 2.

Assume (5.12a) is true for k = s — 1 grids, s > 3. For the s-gnd problem, (5.3),
{5.10) and (2.12) give

(M) al"), = (Glal" 0}, - << - M YA LT Gl A e el ),

] ) s—1
=g, nagafal ™", 1370l
Vs—1
v _ - - -
+ =g (Ml ey, (5.14)
s—-1

We factor 1 — gy—| = 2wcye-1vs-1 fs—1 . Using the inductive hypothesis and using 4c, =

Cy-1 finishes the proof. B

Proof of Theorem 5.1
ta) Using Lemma 5.1 with j = . (5 10¢) and {2 12) proves (5 11a)

(b) To prove (5. 11b). split the gnd levels by partitioming the j ~ (1), ) # 1. See
Figure 3.1 for a schematic illustration for ¥ =3 Foreach n =1. .k - 1 consider

the ;'s such that j ~:(ni but ;) £ :in+1) Lemma 51 Lemma 21 and Lemma
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2.3 show that

k-1
L= 3> e el) (5.

3.13)
n=1  j~i(n)
1% (n+1)
k—1 n n k
< 2wckvk Z(l-£n+lnn+l) pr( H fmnm> ( H 4 | dm ( fm’?m)
n=1 p=1 m=p+1 m=p+1
ChVk n k
1- n n n m m'im
CM[Z] torite ) 1] >K"£[14Ig )

Changing the order of summation gives

k—1 n k
Ji <9WCkapr[Z(1—fn+l ( H £m77m>]< H 4]9m]£m’7m> {5.16)

p=2 n=p m=p+1 m=p+1

[Zl(l—fn+lnn+l < f[ fmﬂm)J(r'iIl4[gml€mqm)_

=1 m=p+1

The quantitites in the square brackets in (5.16) equal

k
H EmNm

m=p+1

k

: 1- H EmTNm

m=1

We use this theorem to find bounds on the multigrid V-cycle asymptotic convergence

respectively, and therefore (5.11b) has been proved.

rate for the k-grid problem with a given damped Jacobi parameter w and r iterations per

smooth. The results are given in the next section.

5.4 Computed values of the asymptotic convergence bounds

Ideally, one would be able to compute k-grid convergence bounds independent of

h . The 4~! x 4*=! matrix, M,, can be written as a 47! x 4*~! matrix. .M(&. 7).

with variable entries depending on the continuous variables £ and 1 € (0.1) evaluated at
(k)

(k)
£=¢" and n=n,

I
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In the two grid case one could get an analytic formula for the characteristic equation
of Mi(£,n) (a polynomial of degree 4 for fixed £, n . find analytic expressions for the
eigenvalues and then find the supremum of these expressions over all £ and n in the unit
square. This would give an exact 2-grid asymptotic convergence rate independent of A . In

practice this is too much work even in the simple 2-grid case. Instead. one chooses a value

Bl 2 MR N

of h = 1/V and computes the spectral radii of .M, for each 1. | ¢ |[< V. keeping track
of the largest. One then repeats the procedure for different values of h and so constructs
a table as in [12] see Table 5.1 From such tables one can predict the h-independent
convergence rates.

In the k grid problem, k > 2 each M, is a 4*7! x 4¥~! matrix and therefore
computing the spectial radius for each i, | ¢ | < .V is expensive, especially for small
h . We therefore use Theorem 5.1 and Gershgorin’s Theorem to compute a bound on
the spectral radius of .M, for each : . This amounts to roughly twice the work of just
evaluating the diagonal elements.

The sharpest bounds on the asymptotic convergence rates for the analysis of the
V-cycle are obtained by these techniques when no smoothing is performed on the coarse-
to-fine part of the cycle, i.e., s =0 in step d. This is called an M\ cycle. The symmetrnc
cycle, 1.e.. s = r,is called an MG cycle. We consider two discretizations of the Laplacian,
the five point discretization, B, = 4,, as given in Section 2. and a certain nine point

discretization given by the following stencil:

} 1 -1 -1 -1
A, = — -1 +8 =1 . (5.17)
14 2
3hl" -1 -1 -1

The corresponding V-cycles will be denoted by, e.g.. Ms\, or MGy, to indicated which
discretization is being used. i

We consider a M)\ algorithm and compare our theoretical bounds to the experimen-
tally observed asymptotic convergence rates. In order to compare our two grid bounds

to the exact two grid convergence rates obtained by the model problem analysis in [3].

we consider a damped Jacobi paramete w = 4/3. Expenimentally, this 1s a good chlioice,

aTe e e U8

though its optimality depends on the number of smoothings and the number of grids. We
take r = 1, 2. 3 or 4 smoothings {smoothing only from fine to coarse meshes). Tables 5.2-

5.5 show the convergence bounds for commonly used meshsizes. Table 5.6 indicates the

46




............

limiting behaviour of these rates for very small A and large number of grids. The experi-
mentally observed asymptotic convergence rates are shown in Table 5.7 for r = 1.2.3. 1.
~ = 4/5 and h =1/64. For exact two grid convergence rates, see Table 5 1

In practice, as k increases there is not as much degredation in the convergence rate
as Tables 5.1-5.7 would indicate.

We compare our bounds to the finite element bounds of [8], using the M G4 cycle
given by taking B, = .-1p and s = r. The comparison is possible because the operators
.-ip satisfy:

Apoy =IP7P4, 7 forp=1.2... ,k (5.18)

Eigenvectors of A, are also eigenvectors of :ip. We also note that for a symmetric V-
cycle, convergence bounds in the energy norm are equivalent to asymptotic convergence
bounds given by the spectral radius. Our bounds are given in Table 5.8 for « = 3/4.
h =1/64. and r = 1,2.3,4. In the next to the last column of Table 5.8 we show the
bounds ( which are independent of the number of grids used) obtained by the methods of
18]. We also calculate the exact two grid convergence rates for MGy, as in {12]. These
numbers are given in the last column of Table 5.8. In this symmetric case, at least for small
r, our bounds are larger than the finite element bounds because in the Fourier analysis we
essentially throw away the post smoothing factors in the off-diagonal terms in order to be

able to apply Lemma 5.1.

Table 5.1 M5\  Two grid asymptotic convergence rates w = .8

h r=1 r=2 r=73 r=4
1/16 592 351 208 135
1/32 0908 358 214 137
1/64 .600 359 216 137
1/128 .600 .360 .216 137
47
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Table 5.2 \/5\ Asymptotic convergence bounds w=.8,r=1
h 2 grids 3 gnds 4 gnds 5 gnids 6 grids 7 grids 8 gnids
1/16 615 719 715
1/32 622 749 769 750
1/64 624 758 197 .800 787
1/128 625 .7T60 .808 .826 .820 815
1/256 .625 761 812 .835 .835 .830 .828
Table 5.3 Ms\ Asymptotic convergence bounds w= 8, r =2
h 2 gnds 3 grids 4 grids 5 grids 6 grids 7 grids 8 gnds
1/16 .369 454 455
1/32 370 460 481 481
1/64 370 .466 .490 491 .491
1/128 370 467 .495 .499 .500 .499
1/256 370 .468 .495 .502 .05 505 004
Table 5.4 Ms\  Asymptotic convergence bounds w=.8,r =3
h 2 grids 3 gnds 4 gnids 5 gnids 6 gnds 7 gnids
1/16 274 .348 .367
1/32 274 .348 .367 372
1/64 275 .350 .370 372 373
1/128 275 .350 371 376 376 376
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Table 5.5 Ms\ Asymptotic convergence bounds w=.8,r =4

: h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids
1/16 .220 .284 .302
1/32 221 .284 .302 307
1/64 221 .284 .302 307 .308
1/128 221 284 .302 .307 .308 .309

Table 5.6 M5\  Asymptotic convergence bounds for small A

w=.8
h r=1 r=2 r=3 r=4
1/2048 .843 .5105 37779 .3087905
. 11 grids
) 1/4096 .846 5111 BTTTT .3087916
12 grids

» g
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Table 5.7 M\  Experimental asymptotic convergence rates

w=.8 h=1/64

r 2 grids 3 grids 4 grids 5 grids 6 grids b,
1 .600 .600 .600 .600 .600
2 .360 .360 .360 .360 .360
| 3 216 .228 233 .242 .246
4 137 .158 17 .181 .193

Table 5.8 MGy A comparnson of the theoretical bounds

w=.75, h=1/64

bounds exact 2 grid
2 grids 3 grids 4 grids 5 grids 6 grids from [8] conv, rates ]
1 .686 717 .816 .860 .879 .40 .249
2 275 .299 .348 .362 .364 25 .067
3 121 .147 .161 .162 .162 18 040
4 .079 114 124 124 124 14 029




-----

APPENDIX

A.1 Proof of Theorem 3.4

Fix 1 = (1), i3),h,k,7 and w as in Section 3.3. Define &,,7,, 95,6, and vp as is

(3.16a-€). As seen in the proof of Lemma 3.1,

DW= (M0, 0P, = (I - G¥) A7"al?, )

b4 3 4
(A.1)
F My I271GLaP, I271GhalP),
Therefore a recursion formula for D{P is
D!P = q, +5,DP7V p=1,2,....k (A.2)
where a, and b, are given by:
ap = 2wcpe, p=1,...,k (A.3a)
by = g&amp(ai® 0P p=1,. 0k (A.3b)
bo = 0. (A3C)
The following four lemmas are all proved by direct calculation.
P
Lemma A.l
Foreach p=1,2,...,k
a.) ap < 4rwe, (A.4a)
and b.) a, > 4w(l - w)c,. (A.4b)
Lemma A.2
Foreach p=2,...,k
a.) b, <1 (A.5a)
51
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and if cpvp, < 1/4,

b.) b, 2 (1 =41+ rw)cpry). (A.5b)

Lemma A.3

For each p=2,...,k

a.) Vp/vpy € — (A.6a)
) P/ p—1 Epnp
and b.) vp/vp-; 2 1. (A.6b)
Lemma A.4
Ifﬂ < <ﬂ =2 k d1 B < 2, th
Z‘m_cl’yp—‘l_a.,p_ ye ooy K QI §< y en
< B A7
a.) Cp—nlp—n < v (A.7a)
B 2 B
and b) Cp—nVp—n Z F"_'H 1-— Em . (A7b)
Proof of Lemma A.1
. Inequality (A.4a) follows immediately from the inequality
.
Y 1-(1-2)* < 2rz (A.8)
'
since [1 —z| < 1 where £ = 2wc,v,.
. Using the inequality
1-(1-2)" > z(2-1) for all z such that |1 —z| < 1, (A.9)
1t 1s clear that
ap 2 2wep (2 = 2wepr,), {A.10)

from which follows (A.4b) since 0 < ¢,vp < 1. 1
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Proof of Lemma A.2

Since
2-%,—1n
oy = 228270 (A.11)
where 0 < £,,7, < 1 and {gp| = [1 = 2wepvp| < 1, (A.5a) is obvious.
If cprp <1/4, then (1 =¢,) and (1 —1n,) < 1/2 and therefore
-1 -1)
(@0, o), =1
Moreover,
2n0 21— 4cpu, (A.12)

It is also clear that (1 ~ chpyp)zr > 1 —4rwcpr,. Combining these inequalities gives

by 2 (1 = drweprp)(1 — 4cprp)

(A.13)
> 1-4(1+rwjcpr,. 1
Proof of Lemma A.3
Since 0 < &p,7mp < 1,
=6 (1=&)(1=mp) = mp(1=65)(1 —mp) <O (A14)
Factoring the lefthand side gives
'fprfp(z"'fp_np) < Ep(l _fp)+77p(1 "”p)- (A.15)
Recall that
Ve = 4(2_‘£p-77p)
14 hg—l
and
92— - - -
Vpoy = 4(2 5;:2—1 ’7p—l) _ 4(6})(1 ép)h';‘ np(l np))l (A.16)
p—1 P i
Thus by (A.15)
Vp 1
< .
Vp~1 fprlp
The second inequality, (A.6b), is clear since
vp oo (&) ¥ (zm) oy (A.17)
Vp—1 gp(l—ép)+ r}p(l"'r]p)
and 0 < €,,m, < 1. 1§
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Proof of Lemma A.4
If

IA

¥ < cpup £ 7 < 1/4 (A.18a)
then
49(1 — 2v) < cp-1Vp—1 < 47(1 —27). (A.18b)

Note that this is just the calculus problem: Find the maximum and minimum of f(z,y) =

z(l—-2)+y(l—y)in = {(z,y): 2y <z+y < 2r, > 0, y > 0}, and the solution
1s straightforward.
By induction, it is easy to see that

ﬂ n—1 25 ,3
ga—n+1 H 1- Zm < Cp—nlVp—n < go-n’ (A,lg)

=90

By (A.18) thisis true for n =1, i.e

28 B 28 B
4—0( —;T;_,__l) < cp1vp-y £ 40_1(1 4a < 40_1. (A.20)

Assume (A.19) is true for ¢p—n41Up—n+1, then

n—-2 n-—2 '
23 28
Cp—nlp—n 2 4a-—n+2 H ( 4a+1~)> 1- qa—n+2 (1 - 4a+1—j)
=0 )

=0

A 28 28
2 ga-n+1l H (1 = 4a+1—j> (1 - m) (A.21)

= 4o— n+l H( 4a+1 J)

=0

n n
Using [](1—-z,) > 1~ 3 z, gives
]=0 j=0

il s atint dhg'




The upper bound for cp—nvp—n is obvious. |1

Proof of Theorem 3.4 part a.

w(l — w) 2 (k) 2rw , d
a. < L —h < —.
*)  mmEddirent S DO s R for v < 72
From lemmas A.la and A.2a, p=k,k—1,...,2,
k
D < dru (z) + DO, (4.23)
p~2

On the coarsest grid, D,(-l) < 4rwc;. Hence by the definition of the ¢,’s (2.15)

k
D < 4rw (Z c,,) < 163er1' (A.24)

p=1

Using ¢, = h?/8 gives the upper bound
D < Srunl. (A.25)

To get the lower bound, use an induction argument. By lemma A.16,

_ 2
DY > 4w(l —w)ey = 5(—1—2—“’-)5 (A.26)
Let 1 < p < k and assume that
_ 2
D > L=t (A.27)

~ max(2, d(1 + rw))’

By rearranging terms, using lemmas A.1b and A.2b (which can be used since vy < d/h?’

implies c,v, < d/(8-4P) < 1/4 by lemma A.4a) it is seen that:

D(p+1) > w(l —w)h%
' ~ max (2, d(1 + rw))

(A.28)

2
+ 40.1(1 - w)Cp+1 (1 - (1 + rw)UP+] hl > .

max (2, d(1 + rw))

d . .
Lemma A.3b guarantees that v, < v < ¥l and therefore the last term in (A.28) 1s
1
positive and can be thrown out. This proves part a.) of Theorem 3.4. i

...............................................
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Proof of Theorem 3.4 part b.

dw(l — d
b.) __w_(_l_w_). < (k) < — for PRI —.
8(1 + rw)vk ! Vk ' hi

Using the definition of cx, vx > d/h? implies cxvy > d/(2 - 4*+'). For each p;,
/\f-p) < 1. To see this, first note that

y AD =1 (1 - 2we ) < 1 (A.29)

Lemma A.3a together with the definition of 4, imply

(1 = 2weprp)?vp_y .

b, < (A.30)
. Vp
j
Combining (A.29) and (A.30) with the definition of a,, gives Dl(-p) <1/v,.
For the lower bound, divide the argument into two cases. Define
v = [log, 2(1 + rw)] (A.31)
where [r] means the greatest integer in r.
1 > d A.32
case ] CklVi 2 33 (A.32)
d .
case 2 < v <1 for some integer a, v < a < k. (A.33)

2 4o+l —

By the definition of ~,
1
5(1 +rw) < 47 < 2(1 + rw). (A.34)

For case 1, Lemma A.1b gives

4dw(l-w) d > dw(l — w)

> .
%k = Vi 2.4 T (1 +rwy

(A.35)

For case 2, look at the finest grid on which the eigenvector is “rough enough™ For

p=k—a+~, lemma A.4 shows that

e ) < < A.36
s\ Ty ) S S 5 (A.36)

nnnnn
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Therefore on QP
d(l — w)w

DP > g, > 4wl —wlcy > —— 22
i =% = ( w)cp_8(1+rw)t/i,

(A.37)

Now this information needs to get back to the fine grid, Q*. On Q”, for p > p. lemma

A.4 says

d d < < d
o T \ ! T 3 gokre T ) S OV S TRy (A.38)
2-4 3-4 2-4

Now using lemmas A.16, A.26 and A.36 and rearranging terms,

w(l —w)

D 241 = wlep + (1= 41 + relepuy) g
p

_d(l - ww +

d
=iy = 1 5]

8

d(l - ww
T 81+ rw)y,

Since this is true for all p > p, take p=k.
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